Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38621405

RESUMO

BACKGROUND: Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS: This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS: Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION: This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.

2.
Lancet ; 403(10426): 533-544, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310910

RESUMO

BACKGROUND: Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS: We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 µg R21 plus 50 µg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS: From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION: R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING: The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.


Assuntos
Vacinas Antimaláricas , Malária , Nanopartículas , Saponinas , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anticorpos Antivirais , Burkina Faso , Método Duplo-Cego , Imunização , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversos
3.
Lancet Infect Dis ; 22(12): 1728-1736, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087586

RESUMO

BACKGROUND: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination. METHODS: This double-blind phase 1/2b randomised controlled trial was done in children aged 5-17 months in Nanoro, Burkina Faso. Eligible children were enrolled and randomly assigned (1:1:1) to receive three vaccinations of either 5 µg R21/25 µg Matrix-M, 5 µg R21/50 µg Matrix-M, or a control vaccine (the Rabivax-S rabies vaccine) before the malaria season, with a booster dose 12 months later. Children were eligible for inclusion if written informed consent could be provided by a parent or guardian. Exclusion criteria included any existing clinically significant comorbidity or receipt of other investigational products. A random allocation list was generated by an independent statistician by use of block randomisation with variable block sizes. A research assistant from the University of Oxford, independent of the trial team, prepared sealed envelopes using this list, which was then provided to the study pharmacists to assign participants. All vaccines were prepared by the study pharmacists by use of the same type of syringe, and the contents were covered with an opaque label. Vaccine safety, efficacy, and a potential correlate of efficacy with immunogenicity, measured as anti-NANP antibody titres, were evaluated over 1 year following the first booster vaccination. The population in which the efficacy analyses were done comprised all participants who received the primary series of vaccinations and a booster vaccination. Participants were excluded from the efficacy analysis if they withdrew from the trial within the first 2 weeks of receiving the booster vaccine. This trial is registered with ClinicalTrials.gov (NCT03896724), and is continuing for a further 2 years to assess both the potential value of additional booster vaccine doses and longer-term safety. FINDINGS: Between June 2, and July 2, 2020, 409 children returned to receive a booster vaccine. Each child received the same vaccination for the booster as they received in the primary series of vaccinations; 132 participants received 5 µg R21 adjuvanted with 25 µg Matrix-M, 137 received 5 µg R21 adjuvanted with 50 µg Matrix-M, and 140 received the control vaccine. R21/Matrix-M had a favourable safety profile and was well tolerated. Vaccine efficacy remained high in the high adjuvant dose (50 µg) group, similar to previous findings at 1 year after the primary series of vaccinations. Following the booster vaccination, 67 (51%) of 132 children who received R21/Matrix-M with low-dose adjuvant, 54 (39%) of 137 children who received R21/Matrix-M with high-dose adjuvant, and 121 (86%) of 140 children who received the rabies vaccine developed clinical malaria by 12 months. Vaccine efficacy was 71% (95% CI 60 to 78) in the low-dose adjuvant group and 80% (72 to 85) in the high-dose adjuvant group. In the high-dose adjuvant group, vaccine efficacy against multiple episodes of malaria was 78% (95% CI 71 to 83), and 2285 (95% CI 1911 to 2568) cases of malaria were averted per 1000 child-years at risk among vaccinated children in the second year of follow-up. Among these participants, at 28 days following their last R21/Matrix-M vaccination, titres of malaria-specific anti-NANP antibodies correlated positively with protection against malaria in both the first year of follow-up (Spearman's ρ -0·32 [95% CI -0·45 to -0·19]; p=0·0001) and second year of follow-up (-0·20 [-0·34 to -0·06]; p=0·02). INTERPRETATION: A booster dose of R21/Matrix-M at 1 year following the primary three-dose regimen maintained high efficacy against first and multiple episodes of clinical malaria. Furthermore, the booster vaccine induced antibody concentrations that correlated with vaccine efficacy. The trial is ongoing to assess long-term follow-up of these participants and the value of further booster vaccinations. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2), Wellcome Trust, and NIHR Oxford Biomedical Research Centre. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Malária , Vacina Antirrábica , Humanos , Burkina Faso , Seguimentos , Método Duplo-Cego , Adjuvantes Imunológicos , Imunogenicidade da Vacina
4.
Front Immunol ; 13: 984323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072606

RESUMO

In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.


Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Plasmodium falciparum , Reino Unido
5.
Lancet Microbe ; 3(9): e663-e671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907430

RESUMO

BACKGROUND: Rabies kills around 60 000 people each year. ChAdOx2 RabG, a simian adenovirus-vectored rabies vaccine candidate, might have potential to provide low-cost single-dose pre-exposure rabies prophylaxis. This first-in-human study aimed to evaluate its safety and immunogenicity in healthy adults. METHODS: We did a single-centre phase 1 study of ChAdOx2 RabG, administered as a single intramuscular dose, with non-randomised open-label dose escalation at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Healthy adults were sequentially allocated to groups receiving low (5 × 109 viral particles), middle (2·5 × 1010 viral particles), and high doses (5 x 1010 viral particles) of ChAdOx2 RabG and were followed up to day 56 after vaccination. The primary objective was to assess safety. The secondary objective was to assess immunogenicity with the internationally standardised rabies virus neutralising antibody assay. In an optional follow-up phase 1 year after enrolment, we measured antibody maintenance then administered a licensed rabies vaccine (to simulate post-exposure prophylaxis) and measured recall responses. The trial is registered with ClinicalTrials.gov, NCT04162600, and is now closed to new participants. FINDINGS: Between Jan 2 and Oct 28, 2020, 12 adults received low (n=3), middle (n=3), and high doses (n=6) of ChAdOx2 RabG. Participants reported predominantly mild-to-moderate reactogenicity. There were no serious adverse events. Virus neutralising antibody concentrations exceeded the recognised correlate of protection (0·5 IU/mL) in three middle-dose recipients and six high-dose recipients within 56 days of vaccination (median 18·0 IU/mL). The median peak virus neutralising antibody concentrations within 56 days were 0·7 IU/mL (range 0·0-54·0 IU/mL) for the low-dose group, 18·0 IU/mL (0·7-18·0 IU/mL) for the middle-dose group, and 18·0 IU/mL (6·0-486·0 IU/mL) for the high-dose group. Nine participants returned for the additional follow-up after 1 year. Of these nine participants, virus neutralising antibody titres of more than 0·5 IU/mL were maintained in six of seven who had received middle-dose or high-dose ChAdOx2 RabG. Within 7 days of administration of the first dose of a licensed rabies vaccine, nine participants had virus neutralising antibody titres of more than 0·5 IU/mL. INTERPRETATION: In this study, ChAdOx2 RabG showed an acceptable safety and tolerability profile and encouraging immunogenicity, supporting further clinical evaluation. FUNDING: UK Medical Research Council and Engineering and Physical Sciences Research Council.


Assuntos
Adenovirus dos Símios , Vacina Antirrábica , Raiva , Adenovirus dos Símios/genética , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Raiva/prevenção & controle , Vacina Antirrábica/efeitos adversos
6.
Front Immunol ; 13: 795463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197971

RESUMO

Protection from liver-stage malaria requires high numbers of CD8+ T cells to find and kill Plasmodium-infected cells. A new malaria vaccine strategy, prime-target vaccination, involves sequential viral-vectored vaccination by intramuscular and intravenous routes to target cellular immunity to the liver. Liver tissue-resident memory (TRM) CD8+ T cells have been shown to be necessary and sufficient for protection against rodent malaria by this vaccine regimen. Ultimately, to most faithfully assess immunotherapeutic responses by these local, specialised, hepatic T cells, periodic liver sampling is necessary, however this is not feasible at large scales in human trials. Here, as part of a phase I/II P. falciparum challenge study of prime-target vaccination, we performed deep immune phenotyping, single-cell RNA-sequencing and kinetics of hepatic fine needle aspirates and peripheral blood samples to study liver CD8+ TRM cells and circulating counterparts. We found that while these peripheral 'TRM-like' cells differed to TRM cells in terms of previously described characteristics, they are similar phenotypically and indistinguishable in terms of key T cell residency transcriptional signatures. By exploring the heterogeneity among liver CD8+ TRM cells at single cell resolution we found two main subpopulations that each share expression profiles with blood T cells. Lastly, our work points towards the potential for using TRM-like cells as a correlate of protection by liver-stage malaria vaccines and, in particular, those adopting a prime-target approach. A simple and reproducible correlate of protection would be particularly valuable in trials of liver-stage malaria vaccines as they progress to phase III, large-scale testing in African infants. We provide a blueprint for understanding and monitoring liver TRM cells induced by a prime-target malaria vaccine approach.


Assuntos
Vacinas Antimaláricas/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Hepatócitos/imunologia , Humanos , Imunidade Celular , Memória Imunológica/imunologia , Fígado/imunologia , Malária/imunologia , Plasmodium/imunologia , Esporozoítos/imunologia , Transcriptoma , Vacinação
7.
Lancet Microbe ; 3(1): e11-e20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34751259

RESUMO

BACKGROUND: ChAdOx1-vectored vaccine candidates against several pathogens have been developed and tested in clinical trials and ChAdOx1 nCoV-19 has now been licensed for emergency use for COVID-19. We assessed the safety and immunogenicity of the ChAdOx1 MERS vaccine in a phase 1b trial in healthy Middle Eastern adults. METHOD: MERS002 is an open-label, non-randomised, dose-escalation, phase 1b trial. Healthy Middle Eastern adults aged 18-50 years were included in the study. ChAdOx1 MERS was administered as a single intramuscular injection into the deltoid muscle of the non-dominant arm at three different dose groups: 5·0 × 109 viral particles in a low-dose group, 2·5 × 1010 viral particles in an intermediate-dose group, and 5·0 × 1010 viral particles in a high-dose group. The primary objective was to assess the safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited and unsolicited adverse events after vaccination for up to 28 days and occurrence of serious adverse events up to 6 months. The study is registered with ClinicalTrials.gov, NCT04170829. FINDINGS: Between Dec 17, 2019, and June 1, 2020, 24 participants were enrolled (six to the low-dose, nine to the intermediate-dose, and nine to the high-dose group) and received a dose; 23 were available for follow-up at 6 months. The one dose of ChAdOx1 MERS vaccine was well tolerated with no serious adverse event reported during the 6 months of follow-up. Most adverse events were mild (67, 74%) and moderate (17, 19%). Six (7%) severe adverse events were reported by two participants in the intermediate-dose group (two feverish, two headache, one joint pain, and one muscle pain). Pain at the injection site was the most common local and overall adverse event, reported by 15 (63%) of the 24 participants. The most common systemic adverse event was headache, reported by 14 (58%), followed by muscle pain reported by 13 (54%). The vaccine induced both antibody and T cell immune responses in all volunteers; antibodies peaked at day 28 and T cell responses peaked at day 14; and continued until the end of follow-up at 6 months. INTERPRETATION: The acceptable safety and immunogenicity data from this phase 1b trial of ChAdOx1 MERS vaccine candidate in Healthy Middle Eastern adults, combined with previous safety and immunogenicity data from a trial in the UK, support selecting the ChAdOx1 MERS vaccine for advancement into phase 2 clinical evaluation. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research; and King Abdullah International Medical Research Center.


Assuntos
COVID-19 , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Infecções por Coronavirus/prevenção & controle , Cefaleia , Humanos , Imunogenicidade da Vacina , Mialgia , Vacinas de DNA , Vacinas Virais
8.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609964

RESUMO

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


Assuntos
Genoma/genética , Malária Falciparum/genética , Animais , Voluntários Saudáveis , Humanos , Masculino , Plasmodium vivax
9.
Med ; 2(6): 701-719.e19, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34223402

RESUMO

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Humanos , Malária/induzido quimicamente , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação , Vacinas Sintéticas
10.
Lancet ; 397(10287): 1809-1818, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964223

RESUMO

BACKGROUND: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS: In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 µg R21 plus 25 µg MM, group 2 received 5 µg R21 plus 50 µg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS: From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION: R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING: The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Burkina Faso , Método Duplo-Cego , Feminino , Antígenos de Superfície da Hepatite B , Humanos , Lactente , Malária Falciparum/prevenção & controle , Masculino , Nanopartículas/administração & dosagem , Modelos de Riscos Proporcionais , Saponinas/administração & dosagem , Resultado do Tratamento
11.
Vaccines (Basel) ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809415

RESUMO

Heterologous prime-boost strategies are known to substantially increase immune responses in viral vectored vaccines. Here we report on safety and immunogenicity of the poxvirus Modified Vaccinia Ankara (MVA) vectored vaccine expressing four Mycobacterium avium subspecies paratuberculosis antigens as a single dose or as a booster vaccine following a simian adenovirus (ChAdOx2) prime. We demonstrate that a heterologous prime-boost schedule is well tolerated and induced T-cell immune responses.

12.
Vaccines (Basel) ; 7(1)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909516

RESUMO

Seasonal influenza infections have a significant global impact leading to increased health and economic burden. The efficacy of currently available seasonal influenza vaccines targeting polymorphic surface antigens has historically been suboptimal. Cellular immune responses against highly conserved Influenza A virus antigens, such as nucleoprotein (NP) and matrix protein-1 (M1), have previously been shown to be associated with protection from disease, whilst viral-vectored vaccines are an effective strategy to boost cell-mediated immunity. We have previously demonstrated that MVA encoding NP and M1 can induce potent and persistent T cell responses against influenza. In this Phase I study, we evaluated the safety and immunogenicity of MVA-NP+M1, which was newly manufactured on an immortalized cell line, in six healthy adult participants. The vaccine was well-tolerated with only mild to moderate adverse events that resolved spontaneously and were comparable to previous studies with the same vaccine manufactured in chick embryo fibroblasts. A significant increase in vaccine-specific T cell responses was detected seven days after immunization and was directed against both antigens in the vector insert. This small Phase I study supports progression of this vaccine to a Phase IIb study to assess immunogenicity and additional protective efficacy in older adults receiving licensed seasonal influenza vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...